|
setup.S is responsible for getting the system data from the BIOS and putting them into appropriate places in system memory.
Other boot loaders, like GNU GRUB and LILO, can load bzImage too. Such boot loaders should load bzImage into memory and setup "real-mode kernel header", esp. type_of_loader, then pass control to bsetup directly. setup.S assumes:
bsetup or setup may not be loaded at SETUPSEG:0, i.e. CS may not be equal to SETUPSEG when control is passed to setup.S;
The first 4 sectors of setup are loaded right after bootsect. The reset may be loaded at SYSSEG:0, preceding vmlinux; This assumption does not apply to bsetup.
/* Signature words to ensure LILO loaded us right */ #define SIG1 0xAA55 #define SIG2 0x5A5A INITSEG = DEF_INITSEG # 0x9000, we move boot here, out of the way SYSSEG = DEF_SYSSEG # 0x1000, system loaded at 0x10000 (65536). SETUPSEG = DEF_SETUPSEG # 0x9020, this is the current segment # ... and the former contents of CS DELTA_INITSEG = SETUPSEG - INITSEG # 0x0020 .code16 .text /////////////////////////////////////////////////////////////////////////////// start: { goto trampoline(); // skip the following header } # This is the setup header, and it must start at %cs:2 (old 0x9020:2) .ascii "HdrS" # header signature .word 0x0203 # header version number (>= 0x0105) # or else old loadlin-1.5 will fail) realmode_swtch: .word 0, 0 # default_switch, SETUPSEG start_sys_seg: .word SYSSEG .word kernel_version # pointing to kernel version string # above section of header is compatible # with loadlin-1.5 (header v1.5). Don't # change it. // kernel_version defined below type_of_loader: .byte 0 # = 0, old one (LILO, Loadlin, # Bootlin, SYSLX, bootsect...) # See Documentation/i386/boot.txt for # assigned ids # flags, unused bits must be zero (RFU) bit within loadflags loadflags: LOADED_HIGH = 1 # If set, the kernel is loaded high CAN_USE_HEAP = 0x80 # If set, the loader also has set # heap_end_ptr to tell how much # space behind setup.S can be used for # heap purposes. # Only the loader knows what is free #ifndef __BIG_KERNEL__ .byte 0 #else .byte LOADED_HIGH #endif setup_move_size: .word 0x8000 # size to move, when setup is not # loaded at 0x90000. We will move setup # to 0x90000 then just before jumping # into the kernel. However, only the # loader knows how much data behind # us also needs to be loaded. code32_start: # here loaders can put a different # start address for 32-bit code. #ifndef __BIG_KERNEL__ .long 0x1000 # 0x1000 = default for zImage #else .long 0x100000 # 0x100000 = default for big kernel #endif ramdisk_image: .long 0 # address of loaded ramdisk image # Here the loader puts the 32-bit # address where it loaded the image. # This only will be read by the kernel. ramdisk_size: .long 0 # its size in bytes bootsect_kludge: .word bootsect_helper, SETUPSEG heap_end_ptr: .word modelist+1024 # (Header version 0x0201 or later) # space from here (exclusive) down to # end of setup code can be used by setup # for local heap purposes. // modelist is at the end of .text section pad1: .word 0 cmd_line_ptr: .long 0 # (Header version 0x0202 or later) # If nonzero, a 32-bit pointer # to the kernel command line. # The command line should be # located between the start of # setup and the end of low # memory (0xa0000), or it may # get overwritten before it # gets read. If this field is # used, there is no longer # anything magical about the # 0x90000 segment; the setup # can be located anywhere in # low memory 0x10000 or higher. ramdisk_max: .long __MAXMEM-1 # (Header version 0x0203 or later) # The highest safe address for # the contents of an initrd |
The __MAXMEM definition in linux/asm-i386/page.h:
/* * A __PAGE_OFFSET of 0xC0000000 means that the kernel has * a virtual address space of one gigabyte, which limits the * amount of physical memory you can use to about 950MB. */ #define __PAGE_OFFSET (0xC0000000) /* * This much address space is reserved for vmalloc() and iomap() * as well as fixmap mappings. */ #define __VMALLOC_RESERVE (128 << 20) #define __MAXMEM (-__PAGE_OFFSET-__VMALLOC_RESERVE) |
The setup header must follow some layout pattern. Refer to linux/Documentation/i386/boot.txt:
Offset Proto Name Meaning /Size 0200/2 2.00+ jump Jump instruction 0202/4 2.00+ header Magic signature "HdrS" 0206/2 2.00+ version Boot protocol version supported 0208/4 2.00+ realmode_swtch Boot loader hook 020C/2 2.00+ start_sys The load-low segment (0x1000) (obsolete) 020E/2 2.00+ kernel_version Pointer to kernel version string 0210/1 2.00+ type_of_loader Boot loader identifier 0211/1 2.00+ loadflags Boot protocol option flags 0212/2 2.00+ setup_move_size Move to high memory size (used with hooks) 0214/4 2.00+ code32_start Boot loader hook 0218/4 2.00+ ramdisk_image initrd load address (set by boot loader) 021C/4 2.00+ ramdisk_size initrd size (set by boot loader) 0220/4 2.00+ bootsect_kludge DO NOT USE - for bootsect.S use only 0224/2 2.01+ heap_end_ptr Free memory after setup end 0226/2 N/A pad1 Unused 0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line 022C/4 2.03+ initrd_addr_max Highest legal initrd address |
As setup code may not be contiguous, we should check code integrity first.
/////////////////////////////////////////////////////////////////////////////// trampoline() { start_of_setup(); // never return .space 1024; } /////////////////////////////////////////////////////////////////////////////// // check signature to see if all code loaded start_of_setup() { // Bootlin depends on this being done early, check bootlin:technic.doc int13/AH=15h(AL=0, DL=0x81); // int13/AH=15h: DISK - GET DISK TYPE #ifdef SAFE_RESET_DISK_CONTROLLER int13/AH=0(AL=0, DL=0x80); // int13/AH=00h: DISK - RESET DISK SYSTEM #endif DS = CS; // check signature at end of setup if (setup_sig1!=SIG1 || setup_sig2!=SIG2) { goto bad_sig; } goto goodsig1; } /////////////////////////////////////////////////////////////////////////////// // some small functions prtstr(); /* print asciiz string at DS:SI */ prtsp2(); /* print double space */ prtspc(); /* print single space */ prtchr(); /* print ascii in AL */ beep(); /* print CTRL-G, i.e. beep */ |
If signature is not found, the rest setup code may precede vmlinux at SYSSEG:0.
no_sig_mess: .string "No setup signature found ..." goodsig1: goto goodsig; // make near jump /////////////////////////////////////////////////////////////////////////////// // move the rest setup code from SYSSEG:0 to CS:0800 bad_sig() DELTA_INITSEG = 0x0020 (= SETUPSEG - INITSEG) SYSSEG = 0x1000 word start_sys_seg = SYSSEG; // defined in setup header { DS = CS - DELTA_INITSEG; // aka INITSEG BX = (byte)(DS:[497]); // i.e. setup_sects // first 4 sectors already loaded CX = (BX - 4) << 8; // rest code in word (2-bytes) start_sys_seg = (CX >> 3) + SYSSEG; // real system code start move SYSSEG:0 to CS:0800 (CX*2 bytes); if (setup_sig1!=SIG1 || setup_sig2!=SIG2) { no_sig: prtstr("No setup signature found ..."); no_sig_loop: hlt; goto no_sig_loop; } } |
The setup code has been moved to correct place. Variable start_sys_seg points to where real system code starts. If "bad_sig" does not happen, start_sys_seg remains SYSSEG.
Check if the loader is compatible with the image.
/////////////////////////////////////////////////////////////////////////////// good_sig() char loadflags; // in setup header char type_of_loader; // in setup header LOADHIGH = 1 { DS = CS - DELTA_INITSEG; // aka INITSEG if ( (loadflags & LOADHIGH) && !type_of_loader ) { // Nope, old loader tries to load big-kernel prtstr("Wrong loader, giving up..."); goto no_sig_loop; // defined above in bad_sig() } } loader_panic_mess: .string "Wrong loader, giving up..." |
Try three different memory detection schemes to get the extended memory size (above 1M) in KB.
First, try e820h, which lets us assemble a memory map; then try e801h, which returns a 32-bit memory size; and finally 88h, which returns 0-64M.
/////////////////////////////////////////////////////////////////////////////// // get memory size loader_ok() E820NR = 0x1E8 E820MAP = 0x2D0 { // when entering this function, DS = CS-DELTA_INITSEG, aka INITSEG (long)DS:[0x1E0] = 0; #ifndef STANDARD_MEMORY_BIOS_CALL (byte)DS:[0x1E8] = 0; // E820NR /* method E820H: see ACPI spec * the memory map from hell. e820h returns memory classified into * a whole bunch of different types, and allows memory holes and * everything. We scan through this memory map and build a list * of the first 32 memory areas, which we return at [E820MAP]. */ meme820: EBX = 0; DI = 0x02D0; // E820MAP do { jmpe820: int15/EAX=E820h(EDX='SMAP', EBX, ECX=20, ES:DI=DS:DI); // int15/AX=E820h: GET SYSTEM MEMORY MAP if (failed || 'SMAP'!=EAX) break; // if (1!=DS:[DI+16]) continue; // not usable good820: if (DS:[1E8]>=32) break; // entry# > E820MAX DS:[0x1E8]++; // entry# ++; DI += 20; // adjust buffer for next again820: } while (!EBX) // not finished bail820: /* method E801H: * memory size is in 1k chunksizes, to avoid confusing loadlin. * we store the 0xe801 memory size in a completely different place, * because it will most likely be longer than 16 bits. * (use 1e0 because that's what Larry Augustine uses in his * alternative new memory detection scheme, and it's sensible * to write everything into the same place.) */ meme801: stc; // to work around buggy BIOSes CX = DX = 0; int15/AX=E801h; /* int15/AX=E801h: GET MEMORY SIZE FOR >64M CONFIGURATIONS * AX = extended memory between 1M and 16M, in K (max 3C00 = 15MB) * BX = extended memory above 16M, in 64K blocks * CX = configured memory 1M to 16M, in K * DX = configured memory above 16M, in 64K blocks */ if (failed) goto mem88; if (!CX && !DX) { CX = AX; DX = BX; } e801usecxdx: (long)DS:[0x1E0] = ((EDX & 0xFFFF) << 6) + (ECX & 0xFFFF); // in K #endif mem88: // old traditional method int15/AH=88h; /* int15/AH=88h: SYSTEM - GET EXTENDED MEMORY SIZE * AX = number of contiguous KB starting at absolute address 100000h */ DS:[2] = AX; } |
Check hardware support, like keyboard, video adapter, hard disk, MCA bus and pointing device.
{ // set the keyboard repeat rate to the max int16/AX=0305h(BX=0); // int16/AH=03h: KEYBOARD - SET TYPEMATIC RATE AND DELAY /* Check for video adapter and its parameters and * allow the user to browse video modes. */ video(); // see video.S // get hd0 and hd1 data copy hd0 data (*int41) to CS-DELTA_INITSEG:0080 (16 bytes); // int41: SYSTEM DATA - HARD DISK 0 PARAMETER TABLE ADDRESS copy hd1 data (*int46) to CS-DELTA_INITSEG:0090 (16 bytes); // int46: SYSTEM DATA - HARD DISK 1 PARAMETER TABLE ADDRESS // check if hd1 exists int13/AH=15h(AL=0, DL=0x81); // int13/AH=15h: DISK - GET DISK TYPE if (failed || AH!=03h) { // AH==03h if it is a hard disk no_disk1: clear CS-DELTA_INITSEG:0090 (16 bytes); } is_disk1: // check for Micro Channel (MCA) bus CS-DELTA_INITSEG:[0xA0] = 0; // set table length to 0 int15/AH=C0h; /* int15/AH=C0h: SYSTEM - GET CONFIGURATION * ES:BX = ROM configuration table */ if (failed) goto no_mca; move ROM configuration table (ES:BX) to CS-DELTA_INITSEG:00A0; // CX = (table length<14)? CX:16; first 16 bytes only no_mca: // check for PS/2 pointing device CS-DELTA_INITSEG:[0x1FF] = 0; // default is no pointing device int11h(); // int11h: BIOS - GET EQUIPMENT LIST if (AL & 0x04) { // mouse installed DS:[0x1FF] = 0xAA; } } |
Check BIOS APM support.
#if defined(CONFIG_APM) || defined(CONFIG_APM_MODULE) { DS:[0x40] = 0; // version = 0 means no APM BIOS int15/AX=5300h(BX=0); // int15/AX=5300h: Advanced Power Management v1.0+ - INSTALLATION CHECK if (failed || 'PM'!=BX || !(CX & 0x02)) goto done_apm_bios; // (CX & 0x02) means 32 bit is supported int15/AX=5304h(BX=0); // int15/AX=5304h: Advanced Power Management v1.0+ - DISCONNECT INTERFACE EBX = CX = DX = ESI = DI = 0; int15/AX=5303h(BX=0); /* int15/AX=5303h: Advanced Power Management v1.0+ * - CONNECT 32-BIT PROTMODE INTERFACE */ if (failed) { no_32_apm_bios: // I moved label no_32_apm_bios here DS:[0x4C] &= ~0x0002; // remove 32 bit support bit goto done_apm_bios; } DS:[0x42] = AX, 32-bit code segment base address; DS:[0x44] = EBX, offset of entry point; DS:[0x48] = CX, 16-bit code segment base address; DS:[0x4A] = DX, 16-bit data segment base address; DS:[0x4E] = ESI, APM BIOS code segment length; DS:[0x52] = DI, APM BIOS data segment length; int15/AX=5300h(BX=0); // check again // int15/AX=5300h: Advanced Power Management v1.0+ - INSTALLATION CHECK if (success && 'PM'==BX) { DS:[0x40] = AX, APM version; DS:[0x4C] = CX, APM flags; } else { apm_disconnect: int15/AX=5304h(BX=0); /* int15/AX=5304h: Advanced Power Management v1.0+ * - DISCONNECT INTERFACE */ } done_apm_bios: } #endif |
// call mode switch { if (realmode_swtch) { realmode_swtch(); // mode switch hook } else { rmodeswtch_normal: default_switch() { cli; // no interrupts allowed outb(0x80, 0x70); // disable NMI } } rmodeswtch_end: } // relocate code if necessary { (long)code32 = code32_start; if (!(loadflags & LOADED_HIGH)) { // low loaded zImage // 0x0100 <= start_sys_seg < CS-DELTA_INITSEG do_move0: AX = 0x100; BP = CS - DELTA_INITSEG; // aka INITSEG BX = start_sys_seg; do_move: move system image from (start_sys_seg:0 .. CS-DELTA_INITSEG:0) to 0100:0; // move 0x1000 bytes each time } end_move: |
Then it will relocate code from CS-DELTA_INITSEG:0 (bbootsect and bsetup) to INITSEG:0, if necessary.
DS = CS; // aka SETUPSEG // Check whether we need to be downward compatible with version <=201 if (!cmd_line_ptr && 0x20!=type_of_loader && SETUPSEG!=CS) { cli; // as interrupt may use stack when we are moving // store new SS in DX AX = CS - DELTA_INITSEG; DX = SS; if (DX>=AX) { // stack frame will be moved together DX = DX + INITSEG - AX; // i.e. SS-CS+SETUPSEG } move_self_1: /* move CS-DELTA_INITSEG:0 to INITSEG:0 (setup_move_size bytes) * in two steps in order not to overwrite code on CS:IP * move up (src < dest) but downward ("std") */ move CS-DELTA_INITSEG:move_self_here+0x200 to INITSEG:move_self_here+0x200, setup_move_size-(move_self_here+0x200) bytes; // INITSEG:move_self_here+0x200 == SETUPSEG:move_self_here goto SETUPSEG:move_self_here; // CS=SETUPSEG now move_self_here: move CS-DELTA_INITSEG:0 to INITSEG:0, move_self_here+0x200 bytes; // I mean old CS before goto DS = SETUPSEG; SS = DX; } end_move_self: } |
For A20 problem and solution, refer to A20 - a pain from the past.
A20_TEST_LOOPS = 32 # Iterations per wait A20_ENABLE_LOOPS = 255 # Total loops to try { #if defined(CONFIG_MELAN) // Enable A20. AMD Elan bug fix. outb(0x02, 0x92); // outb(val, port) a20_elan_wait: while (!a20_test()); // test not passed goto a20_done; #endif a20_try_loop: // First, see if we are on a system with no A20 gate. a20_none: if (a20_test()) goto a20_done; // test passed // Next, try the BIOS (INT 0x15, AX=0x2401) a20_bios: int15/AX=2401h; // Int15/AX=2401h: SYSTEM - later PS/2s - ENABLE A20 GATE if (a20_test()) goto a20_done; // test passed // Try enabling A20 through the keyboard controller a20_kbc: empty_8042(); if (a20_test()) goto a20_done; // test again in case BIOS delayed outb(0xD1, 0x64); // command write empty_8042(); outb(0xDF, 0x60); // A20 on empty_8042(); // wait until a20 really *is* enabled a20_kbc_wait: CX = 0; a20_kbc_wait_loop: do { if (a20_test()) goto a20_done; // test passed } while (--CX) // Final attempt: use "configuration port A" outb((inb(0x92) | 0x02) & 0xFE, 0x92); // wait for configuration port A to take effect a20_fast_wait: CX = 0; a20_fast_wait_loop: do { if (a20_test()) goto a20_done; // test passed } while (--CX) // A20 is still not responding. Try frobbing it again. if (--a20_tries) goto a20_try_loop; prtstr("linux: fatal error: A20 gate not responding!"); a20_die: hlt; goto a20_die; } a20_tries: .byte A20_ENABLE_LOOPS // i.e. 255 a20_err_msg: .ascii "linux: fatal error: A20 gate not responding!" .byte 13, 10, 0 |
To ensure code compatibility with all 32-bit IA-32 processors, perform the following steps to switch to protected mode:
Prepare GDT with a null descriptor in the first GDT entry, one code segment descriptor and one data segment descriptor;
Disable interrupts, including maskable hardware interrupts and NMI;
Load the base address and limit of the GDT to GDTR register, using "lgdt" instruction;
Set PE flag in CR0 register, using "mov cr0" (Intel 386 and up) or "lmsw" instruction (for compatibility with Intel 286);
Immediately execute a far "jmp" or a far "call" instruction.
a20_done: { lidt idt_48; // load idt with 0, 0; // convert DS:gdt to a linear ptr *(long*)(gdt_48+2) = DS << 4 + &gdt; lgdt gdt_48; // reset coprocessor outb(0, 0xF0); delay(); outb(0, 0xF1); delay(); // reprogram the interrupts outb(0xFF, 0xA1); // mask all interrupts delay(); outb(0xFB, 0x21); // mask all irq's but irq2 which is cascaded // protected mode! AX = 1; lmsw ax; // machine status word, bit 0 thru 15 of CR0 // only affects PE, MP, EM & TS flags goto flush_instr; flush_instr: BX = 0; // flag to indicate a boot ESI = (CS - DELTA_INITSEG) << 4; // pointer to real-mode code /* NOTE: For high loaded big kernels we need a * jmpi 0x100000,__KERNEL_CS * * but we yet haven't reloaded the CS register, so the default size * of the target offset still is 16 bit. * However, using an operand prefix (0x66), the CPU will properly * take our 48 bit far pointer. (INTeL 80386 Programmer's Reference * Manual, Mixing 16-bit and 32-bit code, page 16-6) */ // goto __KERNEL_CS:[(uint32*)code32]; */ .byte 0x66, 0xea code32: .long 0x1000 // overwritten in Section 4.7 .word __KERNEL_CS // segment 0x10 // see linux/arch/i386/boot/compressed/head.S:startup_32 } |
Control is passed to linux/arch/i386/boot/compressed/head.S:startup_32. For zImage, it is at address 0x1000; For bzImage, it is at 0x100000. See Section 5.
ESI points to the memory area of collected system data. It is used to pass parameters from the 16-bit real mode code of the kernel to the 32-bit part. See linux/Documentation/i386/zero-page.txt for details.
For mode switching details, refer to IA-32 Manual Vol.3. (Ch.9.8. Software Initialization for Protected-Mode Operation, Ch.9.9.1. Switching to Protected Mode, and Ch.17.4. Transferring Control Among Mixed-Size Code Segments).
The rest are supporting functions and variables.
/* macros created by linux/Makefile targets: * include/linux/compile.h and include/linux/version.h */ kernel_version: .ascii UTS_RELEASE .ascii " (" .ascii LINUX_COMPILE_BY .ascii "@" .ascii LINUX_COMPILE_HOST .ascii ") " .ascii UTS_VERSION .byte 0 /////////////////////////////////////////////////////////////////////////////// default_switch() { cli; outb(0x80, 0x70); } /* disable interrupts and NMI */ bootsect_helper(ES:BX); /* see Section 3.7 */ /////////////////////////////////////////////////////////////////////////////// a20_test() { FS = 0; GS = 0xFFFF; CX = A20_TEST_LOOPS; // i.e. 32 AX = FS:[0x200]; do { a20_test_wait: FS:[0x200] = ++AX; delay(); } while (AX==GS:[0x210] && --CX); return (AX!=GS[0x210]); // ZF==0 (i.e. NZ/NE, a20_test!=0) means test passed } /////////////////////////////////////////////////////////////////////////////// // check that the keyboard command queue is empty empty_8042() { int timeout = 100000; for (;;) { empty_8042_loop: if (!--timeout) return; delay(); inb(0x64, &AL); // 8042 status port if (AL & 1) { // has output delay(); inb(0x60, &AL); // read it no_output: } else if (!(AL & 2)) return; // no input either } } /////////////////////////////////////////////////////////////////////////////// // read the CMOS clock, return the seconds in AL, used in video.S gettime() { int1A/AH=02h(); /* int1A/AH=02h: TIME - GET REAL-TIME CLOCK TIME * DH = seconds in BCD */ AL = DH & 0x0F; AH = DH >> 4; aad; } /////////////////////////////////////////////////////////////////////////////// delay() { outb(AL, 0x80); } // needed after doing I/O // Descriptor table gdt: .word 0, 0, 0, 0 # dummy .word 0, 0, 0, 0 # unused // segment 0x10, __KERNEL_CS .word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb) .word 0 # base address = 0 .word 0x9A00 # code read/exec .word 0x00CF # granularity = 4096, 386 # (+5th nibble of limit) // segment 0x18, __KERNEL_DS .word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb) .word 0 # base address = 0 .word 0x9200 # data read/write .word 0x00CF # granularity = 4096, 386 # (+5th nibble of limit) idt_48: .word 0 # idt limit = 0 .word 0, 0 # idt base = 0L /* [gdt_48] should be 0x0800 (2048) to match the comment, * like what Linux 2.2.22 does. */ gdt_48: .word 0x8000 # gdt limit=2048, # 256 GDT entries .word 0, 0 # gdt base (filled in later) #include "video.S" // signature at the end of setup.S: { setup_sig1: .word SIG1 // 0xAA55 setup_sig2: .word SIG2 // 0x5A5A modelist: } |
Video setup and detection code in video.S:
ASK_VGA = 0xFFFD // defined in linux/include/asm-i386/boot.h /////////////////////////////////////////////////////////////////////////////// video() { pushw DS; // use different segments FS = DS; DS = ES = CS; GS = 0; cld; basic_detect(); // basic adapter type testing (EGA/VGA/MDA/CGA) #ifdef CONFIG_VIDEO_SELECT if (FS:[0x01FA]!=ASK_VGA) { // user selected video mode mode_set(); if (failed) { prtstr("You passed an undefined mode number.\n"); mode_menu(); } } else { vid2: mode_menu(); } vid1: #ifdef CONFIG_VIDEO_RETAIN restore_screen(); // restore screen contents #endif /* CONFIG_VIDEO_RETAIN */ #endif /* CONFIG_VIDEO_SELECT */ mode_params(); // store mode parameters popw ds; // restore original DS } |
Real-time Programming Appendix A: Complete I/O Port List
Summary of empty_zero_page layout (kernel point of view): linux/Documentation/i386/zero-page.txt
Hosting by: Hurra Communications Ltd.
Generated: 2007-01-26 17:58:03