Google      
  WWW DocMirror.net

[ RFC1685 | RFC Index | Protocol Standards | Linux Docs | FreeBSD Docs | RFC1687 ]

RFC 1686








Network Working Group                                          M. Vecchi
Request for Comments: 1686                             Time Warner Cable
Category: Informational                                      August 1994


       IPng Requirements: A Cable Television Industry Viewpoint

Status of this Memo

   This memo provides information for the Internet community.  This memo
   does not specify an Internet standard of any kind.  Distribution of
   this memo is unlimited.

Abstract

   This document was submitted to the IETF IPng area in response to RFC
   1550.  Publication of this document does not imply acceptance by the
   IPng area of any ideas expressed within.  The statements in this
   paper are intended as input to the technical discussions within IETF,
   and do not represent any endorsement or commitment on the part of the
   cable television industry or any of its companies.  Comments should
   be submitted to the big-internet@munnari.oz.au mailing list.

Table of Contents

   1. Executive Summary ..........................................   2
   2. Cable Television Industry Overview .........................   2
   3. Engineering Considerations .................................   5
   3.1  Scaling ..................................................   5
   3.2  Timescale ................................................   5
   3.3  Transition and deployment ................................   6
   3.4  Security .................................................   7
   3.5  Configuration, administration and operation ..............   7
   3.6  Mobile hosts .............................................   8
   3.7  Flows and resource reservation ...........................   8
   3.8  Policy based routing .....................................  10
   3.9  Topological flexibility ..................................  10
   3.10 Applicability ............................................  10
   3.11 Datagram service .........................................  11
   3.12 Accounting ...............................................  11
   3.13 Support of communication media ...........................  12
   3.14 Robustness and fault tolerance ...........................  12
   3.15 Technology pull ..........................................  12
   3.16 Action items .............................................  13
   4. Security Considerations ....................................  13
   5. Conclusions ................................................  13
   6. Author's Address ...........................................  14




Vecchi                                                          [Page 1]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


1.  Executive Summary

   This paper provides comments on topics related to the IPng
   requirements and selection criteria from a cable television industry
   viewpoint. The perspective taken is to position IPng as a potential
   internetworking technology to support the global requirements of the
   future integrated broadband networks that the cable industry is
   designing and deploying. The paper includes a section describing the
   cable television industry and outlining the network architectures to
   support  the delivery of entertainment programming and interactive
   multimedia digital services, as well as telecommunication and data
   communication services.

   Cable networks touch on residences, in addition to campuses and
   business parks.  Broadband  applications will reach the average,
   computer-shy person. The applications will involve a heavy use of
   video and audio to provide communication, entertainment and
   information-access services. The deployment of these capabilities to
   the homes will represent  tens of millions of users.  Impact on the
   network and the IPng requirements that are discussed include issues
   of scalability, reliability and availability, support for real-time
   traffic,  security and privacy, and operations and network
   management, among others.

2. Cable Television Industry Overview

   Cable television networks and the Internet are discovering each
   other. It looks like a great match for a number of reasons, the
   available bandwidth being the primary driver. Nonetheless, it seems
   that the impact of the cable television industry in the deployment of
   broadband networks and services is still not fully appreciated. This
   section will provide a quick (and simplified) overview of cable
   television networks, and explain the trends that are driving future
   network architectures and services.

   Cable television networks  in the U.S. pass by approximately 90
   million homes, and have about 56 million subscribers, of a total of
   about 94 million homes (U.S. TV CENSUS figures, 9/30/93). There are
   more than 11,000 headends, and the cable TV industry has installed
   more than 1,000,000 network-miles. Installation of optical fiber
   proceeds at a brisk pace, the fiber plant in the U.S. going from
   13,000 miles in 1991 to 23,000 miles in 1992. Construction spending
   by the cable industry in 1992 was estimated to be about $2.4 billion,
   of which $1.4 billion was for rebuilds and upgrades. Cable industry
   revenue from subscriber services in 1992 was estimated to be more
   than $21 billion, corresponding to an average subscriber rate of
   about $30 per month (source:  Paul Kagan Associates, Inc.). These
   figures are based on "conventional" cable television services, and



Vecchi                                                          [Page 2]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


   are expected to grow as the cable industry moves into new interactive
   digital services and telecommunications.

   The cable industry's broadband integrated services network
   architecture is based on a hierarchical deployment of network
   elements interconnected by broadband fiber optics and coaxial cable
   links. In a very simplified manner, the following is a view of this
   architecture. Starting at the home, a coaxial cable tree-and-branch
   plant provides broadband two-way access to the network.  The local
   access coaxial cable plant is aggregated at a fiber node, which marks
   the point in the network where fiber optics becomes the broadband
   transmission medium. Current deployment is for  approximately 500
   homes passed by the coaxial cable plant for every fiber node, with
   variations (from as low as 100 to as many as 3000) that depend on the
   density of homes and the degree of penetration of broadband services.
   The multiple links from the fiber nodes reach the headend, which is
   where existing cable systems have installed equipment for
   origination, reception and distribution of television programming.
   The headends are in buildings that can accommodate weather protection
   and powering facilities, and hence represent the first natural place
   into the network where complex switching, routing and processing
   equipment can be conveniently located. Traffic from multiple headends
   can be routed over fiber optics to regional hub nodes deeper into the
   network, where capital-intensive functions can be shared in an
   efficient way.

   The cable networks are evolving quite rapidly to become effective
   two-way digital broadband networks. Cable networks will continue to
   be asymmetric,  and they will continue to deliver analog video. But
   digital capabilities are being installed very aggressively and a
   significant upstream bandwidth is rapidly being activated. The
   deployment of optical fiber deeper into the network is making the
   shared coaxial plant more effective in carrying broadband traffic in
   both directions. For instance, with fiber nodes down to where only
   about 100 to 500 homes are passed by the coaxial drops (down from
   tens of thousands of homes passed in the past), an upstream bandwidth
   of several MHz represents a considerable capacity. The recent
   announcement by Continental Cablevision and PSI to provide Internet
   access services is but one example of the many uses that these two-
   way broadband capabilities can provide.

   The cable networks are also rapidly evolving into regional networks.
   The deployment of fiber optic trunking facilities (many based on
   SONET) will provide gigabit links that interconnect regional hub
   nodes in regional networks spanning multiple cable systems. These
   gigabit networks carry digitized video programming, but will also
   carry voice (telephone) traffic, and, of course, data traffic. There
   are instances in various parts of the country where these regional



Vecchi                                                          [Page 3]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


   networks have been in successful trials. And given that compressed
   digital video is the way to deliver future video programs (including
   interactive video, video on demand, and a whole menu of other
   applications like computer supported collaborative work, multiparty
   remote games, home shopping, customized advertisement, multimedia
   information services, etc.), one can be guaranteed that gigabit
   regional networks will be put in place at an accelerated pace.

   The cable networks are evolving to provide broadband networking
   capabilities in support  of a complete suite of communication
   services. The Orlando network being built by Time Warner is an
   example of a Full Service Network(TM) that provides video, audio and
   data services to the homes. For the trial, ATM is brought to the
   homes at DS3 rates, and it is expected to go up to OC-3 rates when
   switch interfaces will be available. This trial in Orlando represents
   a peek into the way of future cable networks. The Full Service
   Network uses a "set-top" box in every home to provide the network
   interface. This "set-top" box, in addition to some specialized
   modules for video processing, is really a powerful computer in
   disguise, with a computational power comparable to high-end desktop
   workstations. The conventional analog cable video channels will be
   available, but a significant part of the network's RF bandwidth will
   be devoted to digital services. There are broadband ATM switches in
   the network (as well as 5E-type switches for telephony), and video
   servers that include all kinds of movies and information services. An
   important point to notice is that the architecture of future cable
   networks maps directly to the way networked computing has developed.
   General purpose hosts (i.e., the set-top boxes)  are interconnected
   through a broadband network to other hosts and to servers.

   The deployment of the future broadband information superhighway will
   require architectures for both the network infrastructure and the
   service support environment that truly integrate the numerous
   applications that will be offered to the users. Applications will
   cover a very wide range of scenarios.  Entertainment video delivery
   will evolve from the current core services of the cable industry to
   enhanced offerings like interactive video, near-video-on-demand and
   complete video-on-demand functions. Communication services will
   evolve from the current telephony and low-speed data to include
   interactive multimedia applications, information access services,
   distance learning, remote medical diagnostics and evaluations,
   computer supported collaborative work,  multiparty remote games,
   electronic shopping, etc. In addition to the complexity and diversity
   of the applications, the future broadband information infrastructure
   will combine a number of different networks that will have to work in
   a coherent manner. Not only will the users be connected to different
   regional networks, but the sources of information - in the many forms
   that they will take - will also belong to different enterprises and



Vecchi                                                          [Page 4]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


   may be located in remote networks. It is important to realize from
   the start that the two most important attributes of the architecture
   for the future broadband information superhighway are integration and
   interoperability. The Internet community has important  expertise and
   technology that could contribute to the definition and development of
   these future broadband networks.

3. Engineering Considerations

   The following comments represent expected requirements of future
   cable networks, based on the vision of an integrated broadband
   network that will support a complete suite of interactive video,
   voice and data services.

   3.1  Scaling

      The current common wisdom is that IPng should be able to deal with
      10 to the 12th nodes. Given that there are of the order of 10 to
      the 8th households in the US, we estimate a worldwide  number of
      households of about 100 times as many, giving a total of about 10
      to the 10th global households. This number represents about 1
      percent of the 10 to the 12th nodes, which indicates that there
      should be enough space left for business, educational, research,
      government, military and other nodes connected to the future
      Internet.

      One should be cautious, however, not to underestimate the
      possibility of multiple addresses that will be used at each node
      to specify different devices, processes, services, etc. For
      instance, it is very likely that more than one address will  be
      used at each household for different devices such as the
      entertainment system (i.e., interactive multimedia "next
      generation" television(s)), the data system (i.e., the home
      personal computer(s)), and other new terminal devices that will
      emerge in the future (such as networked games, PDAs, etc.).
      Finally, the administration of the address space is of importance.
      If there are large blocks of assigned but unused addresses, the
      total number of available addresses will be effectively reduced
      from the 10 to the 12th nodes that have been originally
      considered.

   3.2  Timescale

      The cable industry is already making significant investments in
      plant upgrades, and the current estimates for the commercial
      deployment indicate that by the year 1998 tens of millions of
      homes will be served by interactive and integrated cable networks
      and services. This implies that during 1994 various trials will be



Vecchi                                                          [Page 5]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


      conducted and evaluated, and the choices of technologies and
      products will be well under way by the year 1995. That is to say,
      critical investment and technological decisions by many of the
      cable operators, and their partners, will be made over the next 12
      to 24 months.

      These time estimates are tentative, of course, and subject to
      variations depending on economic, technical and public policy
      factors. Nonetheless, the definition of the IPng capabilities and
      the availability of implementations should not be delayed beyond
      the next year, in order to meet the period during which many of
      the early technological choices for the future deployment of cable
      networks and services will be made. The full  development and
      deployment of IPng will be, of course, a long period that will be
      projected beyond the next year. Availability of early
      implementations will allow experimentation in trials to validate
      IPng choices and to provide early buy-in from the developers of
      networking products that will support the planned roll out.

      It is my opinion that the effective support for high quality video
      and audio streams is one of the critical capabilities that should
      be demonstrated by IPng in order to capture the attention of
      network operators and information providers of interactive
      broadband services (e.g., cable television industry and partners).
      The currently accepted view is that IP is a great  networking
      environment for the control side of an interactive broadband
      system. It is a challenge for IPng to demonstrate that it can be
      effective in transporting the broadband video and audio data
      streams, in addition to providing the networking support for the
      distributed control system.

   3.3  Transition and deployment

      The transition from the current version to IPng has to consider
      two aspects: support for existing applications and availability of
      new capabilities. The delivery of digital video and audio programs
      requires the capability to do broadcasting and selective
      multicasting efficiently. The interactive applications that the
      future cable networks will provide will be based on multimedia
      information streams that will have real-time constraints. That is
      to say, both the end-to-end delays and the jitter associated with
      the delivery across the network have to be bound. In addition, the
      commercial nature of these large private investments will require
      enhanced network capabilities for routing choices, resource
      allocation, quality of service controls, security, privacy, etc.
      Network management will be an increasingly important issue in the
      future. The extent to which the current IP fails to provide the
      needed capabilities will provide additional incentive for the



Vecchi                                                          [Page 6]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


      transition to occur, since there will be no choice but to use IPng
      in future applications.

      It is very important, however, to maintain backwards compatibility
      with the current IP. There is the obvious argument that the
      installed technological base developed around IP cannot be
      neglected under any reasonable evolution scenario. But in
      addition, one has to keep in mind that a global Internet will be
      composed of many interconnected heterogeneous networks, and that
      not all subnetworks, or user communities, will provide the full
      suite of interactive multimedia services. Interworking between
      IPng and IP will have to continue for a very long time in the
      future.

   3.4  Security

      The security needed in future networks falls into two general
      categories: protection of the users and protection of the network
      resources. The users of the future global Internet will include
      many communities that will likely expect a higher level of
      security than is currently available. These users include
      business, government, research, military, as well as private
      subscribers. The protection of the users' privacy is likely to
      become a hot issue as new commercial services are rolled out. The
      possibility of illicitly monitoring traffic patterns by looking at
      the headers in IPng packets, for instance, could be disturbing to
      most users that subscribe to new information and entertainment
      services.

      The network operators and the information providers will also
      expect effective protection of their resources. One would expect
      that most of the security will be dealt at higher levels than
      IPng, but some issues might have to be considered in defining IPng
      as well. One issue relates, again, to the possibility of illicitly
      monitoring addresses and traffic patterns by looking at the IPng
      packet headers. Another issue of importance will be the capability
      of effective network management under the presence of benign or
      malicious bugs, especially if both source routing and resource
      reservation functionality is made available.

   3.5  Configuration, administration and operation

      The operations of these future integrated broadband networks will
      indeed become more difficult, and not only because the networks
      themselves will be larger and more complex, but also because of
      the number and diversity of applications running on or through the
      networks. It is expected that most of the issues that need to be
      addressed for effective operations support systems will belong to



Vecchi                                                          [Page 7]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


      higher layers than IPng, but some aspects should be considered
      when defining IPng.

      The area where IPng would have most impact would be in the
      interrelated issues of resource reservation, source routing and
      quality of service control. There will be tension to maintain high
      quality of service and low network resource usage simultaneously,
      especially if the users can specify preferred routes through the
      network. Useful capabilities at the IPng level would enable the
      network operator, or the user, to effectively monitor and direct
      traffic in order to meet quality and cost parameters. Similarly,
      it will be important to dynamically reconfigure the connectivity
      among end points or the location of specific processes (e.g., to
      support mobile computing terminals), and the design of IPng should
      either support, or at least not get in the way of, this
      capability. Under normal conditions, one would expect that
      resources for the new routing will be established before the old
      route is released in order to minimize service interruption. In
      cases where reconfiguration is in response to abnormal (i.e.,
      failure) conditions, then one would expect longer interruptions in
      the service, or even loss of service.

      The need to support heterogeneous multiple administrative domains
      will also have important implications on the available addressing
      schemes that IPng should support. It will be both a technical and
      a business issue to have effective means to address nodes,
      processes and users, as well as choosing schemes based on fair and
      open processes for allocation and administration of the address
      space.

   3.6  Mobile hosts

      The proliferation of personal and mobile communication services is
      a well established trend by now. Similarly, mobile computing
      devices are being introduced to the market at an accelerated pace.
      It would not be wise to disregard the issue of host mobility when
      evaluating proposals for IPng.  Mobility will have impact on
      network addressing and routing, adaptive resource reservation,
      security and privacy, among other issues.

   3.7  Flows and resource reservation

      The largest fraction of the future broadband traffic will be due
      to real-time voice and video streams. It will be necessary to
      provide performance bounds for bandwidth, jitter, latency and loss
      parameters, as well as synchronization between media streams
      related by an application in a given session. In addition, there
      will be alternative network providers that will compete for the



Vecchi                                                          [Page 8]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


      users and that will provide connectivity to a given choice of many
      available service providers. There is no question that IPng, if it
      aims to be a general protocol useful for interactive multimedia
      applications, will need to support some form of resource
      reservation or flows.

      Two aspects are worth mentioning. First, the quality of service
      parameters are not known ahead of time, and hence the network will
      have to include flexible capabilities for defining these
      parameters. For instance, MPEG-II packetized video might have to
      be described differently than G.721 PCM packetized voice, although
      both data streams represent real-time traffic channels. In some
      cases, it might be appropriate to provide soft guarantees in the
      quality parameters, whereas in other cases hard guarantees might
      be required. The tradeoff between cost and quality could be an
      important capability of future IPng-based networks, but much work
      needs to be advanced on this.

      A second important issue related to resource reservations is the
      need to deal with broken or lost end-to-end state information. In
      traditional circuit-switched networks, a considerable effort is
      expended by the intelligence of the switching system to detect and
      recover resources that have been lost due to misallocation. Future
      IPng networks will provide resource reservation capabilities by
      distributing the state information of a given session in several
      nodes of the network. A significant effort will be needed to find
      effective methods to maintain consistency and recover from errors
      in such a distributed environment. For example, keep-alive
      messages to each node where a queuing policy change has been made
      to establish the flow could be a strategy to make sure that
      network resources do not remain stuck in some corrupted session
      state. One should be careful, however, to assume that complex
      distributed algorithms can be made robust by using time-outs. This
      is a problem that might require innovation beyond the reuse of
      existing solutions.

      It should be noted that some aspects of the requirements for
      recoverability are less stringent in this networking environment
      than in traditional distributed data processing systems. In most
      cases it is not needed (or even desirable) to recover the exact
      session state after failures, but only to guarantee that the
      system returns to some safe state. The goal would be to guarantee
      that no network resource is reserved that has not been correctly
      assigned to a valid session. The more stringent requirement of
      returning to old session state is not meaningful since the value
      of a session disappears, in most cases, as time progresses. One
      should keep in mind, however, that administrative and management
      state, such as usage measurement, is subject to the same



Vecchi                                                          [Page 9]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


      conventional requirements of recoverability that database systems
      currently offer.

   3.8  Policy based routing

      In future broadband networks, there will be multiple network
      operators and information providers competing for customers and
      network traffic.  An important capability of IPng will be to
      specify, at the source, the specific network for the traffic to
      follow. The users will be able to select specific networks that
      provide performance, feature or cost advantages. From the user's
      perspective, source routing is a feature that would enable a wider
      selection of network access options, enhancing their ability to
      obtain features, performance or cost advantages. From the network
      operator and service provider perspective, source routing would
      enable the offering of targeted bundled services that will cater
      to specific users and achieve some degree of customer lock-in. The
      information providers will be able to optimize the placement and
      distribution of their servers, based on either point-to-point
      streams or on multicasting to selected subgroups. The ability of
      IPng to dynamically specify the network routing would be an
      attractive feature that will facilitate the flexible offering of
      network services.

   3.9  Topological flexibility

      It is hard to predict what the topology of the future Internet
      will be. The current model developed in response to a specific set
      of technological drivers, as well as an open administrative
      process reflecting the non-commercial nature of the sector. The
      future Internet will continue to integrate multiple administrative
      domains that will be deployed by a variety of network operators.
      It is likely that there will be more "gateway" nodes (at the
      headends or even at the fiber nodes, for instance) as local and
      regional broadband networks will provide connectivity for their
      users to the global Internet.

   3.10 Applicability

      The future broadband networks that will be deployed, by both the
      cable industry and other companies, will integrate a diversity of
      applications. The strategies of the cable industry are to reach
      the homes, as well as schools, business, government and other
      campuses. The applications will focus on entertainment, remote
      education, telecommuting, medical, community services, news
      delivery and the whole spectrum of future information networking
      services. The traffic carried by the broadband networks will be
      dominated by real-time video and audio streams, even though there



Vecchi                                                         [Page 10]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


      will also be an important component of traffic associated with
      non-time-critical services such messaging, file transfers, remote
      computing, etc. The value of IPng will be measured as a general
      internetworking technology for all these classes of applications.
      The future market for IPng could be much wider and larger than the
      current market for IP, provided that the capabilities to support
      these diverse interactive multimedia applications are available.

      It is difficult to predict how pervasive the use of IPng and its
      related technologies might be in future broadband networks. There
      will be extensive deployment of distributed computing
      capabilities, both for the user applications and for the network
      management and operation support systems that will be required.
      This is the area where IPng could find a firm stronghold,
      especially as it can leverage on the extensive IP technology
      available. The extension of IPng to support video and audio real-
      time applications, with the required performance, quality and cost
      to be competitive, remains a question to be answered.

   3.11 Datagram service

      The "best-effort", hop-by-hop paradigm of the existing IP service
      will have to be reexamined if IPng is to provide capabilities for
      resource reservation or flows. The datagram paradigm could still
      be the basic service provided by IPng for many applications, but
      careful thought should be given to the need to support real-time
      traffic with (soft and/or hard) quality of service requirements.

   3.12 Accounting

      The ability to do accounting should be an important consideration
      in the selection of IPng. The future broadband networks will be
      commercially motivated, and measurement of resource usage by the
      various users will be required. The actual billing may or may not
      be based on session-by-session usage, and accounting will have
      many other useful purposes besides billing. The efficient
      operation of networks depends on maintaining availability and
      performance goals, including both on-line actions and long term
      planning and design. Accounting information will be important on
      both scores. On the other hand, the choice of providing accounting
      capabilities at the IPng level should be examined with a general
      criterion to introduce as little overhead as possible. Since
      fields for "to", "from" and time stamp will be available for any
      IPng choice, careful examination of what other parameters in IPng
      could be useful to both accounting and other network functions so
      as to keep IPng as lean as possible.





Vecchi                                                         [Page 11]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


   3.13 Support of communication media

      The generality of IP should be carried over to IPng. It would not
      be an advantage to design a general internetworking technology
      that cannot be supported over as wide a class of communications
      media as possible. It is reasonable to expect that IPng will start
      with support over a few select transport technologies, and rely on
      the backwards compatibility with IP to work through a transition
      period. Ultimately, however, one would expect IPng to be carried
      over any available communications medium.

   3.14 Robustness and fault tolerance

      Service availability, end-to-end and at expected performance
      levels, is the true measure of robustness and fault-tolerance. In
      this sense, IPng is but one piece of a complex puzzle. There are,
      however, some vulnerability aspects of IPng that could decrease
      robustness. One general class of bugs will be associated with the
      change itself, regardless of any possible enhancement in
      capabilities. The design, implementation and testing process will
      have to be managed very carefully. Networks and distributed
      systems are tricky. There are plenty of horror stories from the
      Internet community itself to make us cautious, not to mention the
      brief but dramatic outages over the last couple of years
      associated with relatively small software bugs in the control
      networks (i.e., CCS/SS7 signaling) of the telephone industry, both
      local and long distance.

      A second general class of bugs will be associated with the
      implementation of new capabilities. IPng will likely support a
      whole set of new functions, such as larger (multiple?) address
      space(s), source routing and flows, just to mention a few.
      Providing these new capabilities will require in most cases
      designing new distributed algorithms and testing implementation
      parameters very carefully. In addition, the future Internet will
      be even larger, have more diverse applications and have higher
      bandwidth. These are all factors that could have a multiplying
      effect on bugs that in the current network might be easily
      contained. The designers and implementers of IPng should be
      careful. It will be very important to provide the best possible
      transition process from IP to IPng. The need to maintain
      robustness and fault-tolerance is paramount.

   3.15 Technology pull

      The strongest "technology pull" factors that will influence the
      Internet are the same that are dictating the accelerated pace of
      the cable, telephone and computer networking world. The following



Vecchi                                                         [Page 12]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


      is a partial list: higher network bandwidth, more powerful CPUs,
      larger and faster (static and dynamic) memory, improved signal
      processing and compression methods, advanced distributed computing
      technologies, open and extensible network operating systems, large
      distributed database management and directory systems, high
      performance and high capacity real-time servers, friendly
      graphical user interfaces, efficient application development
      environments. These technology developments, coupled with the
      current aggressive business strategies in our industry and
      favorable public policies, are powerful forces that will clearly
      have an impact on the evolution and acceptance of IPng. The
      current deployment strategies of the cable industry and their
      partners do not rely on the existence of commercial IPng
      capabilities, but the availability of new effective networking
      technology could become a unifying force to facilitate the
      interworking of networks and services.

   3.16 Action items

      We have no suggestions at this time for changes to the
      directorate, working groups or others to support the concerns or
      gather more information needed for a decision. We remain available
      to provide input to the IPng process.

4.  Security Considerations

   No comments on general security issues are provided, beyond the
   considerations presented in the previous subsection 3.4 on network
   security.

5.  Conclusions

   The potential for IPng to provide a universal internetworking
   solution is a very attractive possibility, but there are many hurdles
   to be overcome. The general acceptance of IPng to support future
   broadband services will depend on more than the IPng itself. There is
   need for IPng to be backed by the whole suite of Internet technology
   that will support the future networks and applications. These
   technologies must include the adequate support for commercial
   operation of a global Internet that will be built, financed and
   administered by many different private and public organizations.

   The Internet community has taken pride in following a nimble and
   efficient path in the development and deployment of network
   technology. And the Internet has been very successful up to now. The
   challenge is to show that the Internet model can be a preferred
   technical solution for the future. Broadband networks and services
   will become widely available in a relatively short future, and this



Vecchi                                                         [Page 13]


RFC 1686     A Cable Television Industry Viewpoint on IPng   August 1994


   puts the Internet community in a fast track race. The current process
   to define IPng can be seen as a test of the ability of the Internet
   to evolve from its initial development - very successful but also
   protected and limited in scope  - to a general technology for the
   support of a commercially viable broadband marketplace.  If the
   Internet model is to become the preferred general solution for
   broadband networking,  the current IPng process seems to be a
   critical starting point.

6.  Author's Address

   Mario P. Vecchi
   Time Warner Cable,
   160 Inverness Drive West
   Englewood, CO 80112

   Phone: (303) 799-5540
   Fax: (303) 799-5651
   EMail: mpvecchi@twcable.com
































Vecchi                                                         [Page 14]


Hosting by: Hurra Communications Ltd.
Generated: 2007-01-26 17:59:03